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Visualization of complex functions

Graphical representations of functions belong to the most useful tools in
mathematics and its applications. However, the graph

Gf := {(z , f (z)) ∈ C
2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
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Gf := {(z , f (z)) ∈ C
2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
A traditional substitute is the “analytic landscape”

Af := {(z , |f (z)|) ∈ C× R : z ∈ D}.

This picture of the complex
Gamma function, published
1909 in the famous book by
Jahnke and Emde, acquired
an almost iconic status.
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Graphical representations of functions belong to the most useful tools in
mathematics and its applications. However, the graph

Gf := {(z , f (z)) ∈ C
2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
A traditional substitute is the “analytic landscape”

Af := {(z , |f (z)|) ∈ C× R : z ∈ D}.

The analytic landscape depicts
only the absolute value of a
function and neglects its ar-
gument (phase). Jahnke and
Emde compensated this by
drawing lines of constant ar-
gument.
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Graphical representations of functions belong to the most useful tools in
mathematics and its applications. However, the graph

Gf := {(z , f (z)) ∈ C
2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
A traditional substitute is the “analytic landscape”

Af := {(z , |f (z)|) ∈ C× R : z ∈ D}.

Today analytic landscapes can
be computed easily, and co-
loring allows one also to in-
corporate the argument.



Visualization of complex functions

Graphical representations of functions belong to the most useful tools in
mathematics and its applications. However, the graph

Gf := {(z , f (z)) ∈ C
2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
A traditional substitute is the “analytic landscape”

Af := {(z , |f (z)|) ∈ C× R : z ∈ D}.

Instead of the argument one
better uses the (well-defined)
phase

f (z)/|f (z)|.

It lives on the unit circle T,
and can be encoded using
a circular color scheme.
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Graphical representations of functions belong to the most useful tools in
mathematics and its applications. However, the graph
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2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
A traditional substitute is the “analytic landscape”

Af := {(z , |f (z)|) ∈ C× R : z ∈ D}.

Viewing the colored analytic
landscape straight from top,
we see (what I call) the pha-
se portrait or phase plot of the
function.



Visualization of complex functions

Graphical representations of functions belong to the most useful tools in
mathematics and its applications. However, the graph

Gf := {(z , f (z)) ∈ C
2 : z ∈ D}

of a complex function f : D → C is a surface in four-dimensional space.
A traditional substitute is the “analytic landscape”

Af := {(z , |f (z)|) ∈ C× R : z ∈ D}.

Viewing the colored analytic
landscape straight from top,
we see (what I call) the pha-
se portrait or phase plot of the
function.
Phase plots are special vari-
ants of domain coloring.
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The phase plot of a function shows many properties more clearly than the
analytic landscape.

An analytic landscape of f (z) = e1/z
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Phase plots outperform analytic landscapes

The phase plot of a function shows many properties more clearly than the
analytic landscape.

An analytic landscape of f (z) = e1/z and its phase plot.
A function which is meromorphic in an open connected set (domain) G
is uniquely determined up to a positive constant factor by its phase plot.
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Phase Plots: Less is more – more or less



Phase plots and their modifications

We illustrate the construction of a phase plot with the rational function
f (z) = (z − 1)/(z2 + z + 1) in the square |Re z | ≤ 2, |Im z | ≤ 2.

zq

f
−→

f (z) q
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We illustrate the construction of a phase plot with the rational function
f (z) = (z − 1)/(z2 + z + 1) in the square |Re z | ≤ 2, |Im z | ≤ 2.
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f (z) q

All points of the w -plane with the same argument get the same color.



Phase plots and their modifications

We illustrate the construction of a phase plot with the rational function
f (z) = (z − 1)/(z2 + z + 1) in the square |Re z | ≤ 2, |Im z | ≤ 2.

zq

f
−→

f (z) q

All points of the w -plane with the same argument get the same color.
Then every point z in the domain of definition is colored like its image
point w = f (z).



Phase plots and their modifications

We illustrate the construction of a phase plot with the rational function
f (z) = (z − 1)/(z2 + z + 1) in the square |Re z | ≤ 2, |Im z | ≤ 2.

f
−→

Modifications of the color scheme in the w -plane allow one to read off
properties of the function more easily.
This version incorporates the absolute value of f by highlighting some
contour lines of |f |.



Phase plots and their modifications

We illustrate the construction of a phase plot with the rational function
f (z) = (z − 1)/(z2 + z + 1) in the square |Re z | ≤ 2, |Im z | ≤ 2.

f
−→

Modifications of the color scheme in the w -plane allow one to read off
properties of the function more easily.
This variant demonstrates that the mapping f is conformal.
With a few exceptions, all “tiles” have four right angled corners.



Phase plots and their modifications

We illustrate the construction of a phase plot with the rational function
f (z) = (z − 1)/(z2 + z + 1) in the square |Re z | ≤ 2, |Im z | ≤ 2.

f
−→

Classical domain coloring (Frank Farris) uses a two-dimensional color
scheme, with brightness corresponding to absolute value, to encode the
values of f completely.



How to read it



Zeros and poles

Both rows show phase portraits of the power functions f (z) = zk for
k = 0 (left), k = 1, 2, 3 (above) and k = −1,−2,−3 (below).



Zeros and poles

Both rows show phase portraits of the power functions f (z) = zk for
k = 0 (left), k = 1, 2, 3 (above) and k = −1,−2,−3 (below).

Zeros and poles can be distinguished by the orientation of colors, their
multiplicity can be read off easily.
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The isochromatic lines (sets with equal phase of f ) and the contour lines
(sets with equal absolute value of f ) are perpendicular.

The density of these lines is related to the relative growth of the function,
it is proportional to |f ′|/|f | = |(log f )′|.
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The isochromatic lines (sets with equal phase of f ) and the contour lines
(sets with equal absolute value of f ) are perpendicular.

The density of these lines is related to the relative growth of the function,
it is proportional to |f ′|/|f | = |(log f )′|.



Isochromatic lines and contour lines

The isochromatic lines (sets with equal phase of f ) and the contour lines
(sets with equal absolute value of f ) are perpendicular.

For the exponential function both families consist of parallel lines.
Here we see f (z) = exp(z) in |Re z | < 5, |Im z | < 5.



Isochromatic lines and contour lines

The isochromatic lines (sets with equal phase of f ) and the contour lines
(sets with equal absolute value of f ) are perpendicular.

For the exponential function both families consist of parallel lines.
Here we see f (z) = exp(2z) in |Re z | < 5, |Im z | < 5.



Isochromatic lines and contour lines

The isochromatic lines (sets with equal phase of f ) and the contour lines
(sets with equal absolute value of f ) are perpendicular.

For the exponential function both families consist of parallel lines.
Here we see f (z) = exp(5z) in |Re z | < 5, |Im z | < 5.



Critical Points and Saddle Points

Critical points ζ of a function f are the zeros of its derivative.
Points where f ′(ζ) = 0 and f (ζ) 6= 0 are called saddle points.



Critical Points and Saddle Points

Critical points ζ of a function f are the zeros of its derivative.
Points where f ′(ζ) = 0 and f (ζ) 6= 0 are called saddle points.

In the phase plot of f saddle points are the only crossing points of
isochromatic lines.



The Order of Saddle Points

The order of a saddle point is the multiplicity of the zero of f ′.
A saddle point of order n is the crossing of n + 1 isochromatic lines.

The saddle points in these phase plots have orders 1,2,3 and 8.



The Order of Saddle Points

A tile containing saddle points is called exceptional. When it has saddle
points of orders summing up to n, it has 4(n + 1) corners.

The saddle points in these phase plots have orders 1,2,3 and 8.



Blaschke Products
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, |z0| < 1, |c | = 1.
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,

it has modulus 1 on T.
This has degree two.
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Blaschke Products

A Blaschke factor is a Moebius transformation of the form

f (z) = c
z − z0
1− z0z

, |z0| < 1, |c | = 1.

The mapping f : D → D is a conformal automorphism of the unit disk D.

A Blaschke product is the
product of Blaschke factors,

B(z) = c

n∏

k=1

z − zk
1− zkz

,

it has modulus 1 on T.
This has degree 40.

Due to B(1/z) = 1/B(z), the phase plot of Blaschke products on the
Riemann sphere is symmetric with respect to the equator.



Intermezzo: The Phase Flow



The phase flow

The phase plot of Blaschke products suggests that “phase” is a substance
which flows along the isochromatic lines.



The phase flow

The phase plot of Blaschke products suggests that “phase” is a substance
which flows along the isochromatic lines.

This can be modeled by a vector
field. If f : D → Ĉ := C ∪ {∞}
is a meromorphic function, then
Vf defined by

Vf (z) := −
f (z) f ′(z)

|f (z)|2 + |f ′(z)|2

is smooth on D, and Vf (z) is
tangent to the isochromatic lines
of f at z (with C ∼= R
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The phase flow

The phase plot of Blaschke products suggests that “phase” is a substance
which flows along the isochromatic lines.

This can be modeled by a vector
field. If f : D → Ĉ := C ∪ {∞}
is a meromorphic function, then
Vf defined by

Vf (z) := −
f (z) f ′(z)

|f (z)|2 + |f ′(z)|2

is smooth on D, and Vf (z) is
tangent to the isochromatic lines
of f at z (with C ∼= R

2).

The vector field Vf generates a continuous semigroup, the phase flow Ψf .



Visualization of the phase flow

Visualization of the proper phase flow is demanding, here is a cheap
substitute. It has the same orbits but a different (discontinuous) speed.

The animated phase plot is a pull-back of the range disk, covered by a
rotating polar chessboard mask.



Basins of zeros

The phase flow of a meromorphic function f has fixed points at its zeros
(attracting), saddle points (as the name tells) and poles (repelling).
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The phase flow of a Blaschke
product B is special: removing
from D all stable manifolds of the
saddle points, the remaining set
D \ S is the disjoint union of
simply connected domains, which
are the basins of zeros.
Observing the reverse phase flow,
it becomes clear that B maps
each basin onto the disk D with
some radial slits.
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Basins of zeros

The phase flow of a meromorphic function f has fixed points at its zeros
(attracting), saddle points (as the name tells) and poles (repelling).

The phase flow of a Blaschke
product B is special: removing
from D all stable manifolds of the
saddle points, the remaining set
D \ S is the disjoint union of
simply connected domains, which
are the basins of zeros.
Observing the reverse phase flow,
it becomes clear that B maps
each basin onto the disk D with
some radial slits.

This statement must be modified somewhat when B has multiple zeros.



Regularized Blaschke products

The basins of attraction of the zeros of B are natural candidates to form
the sheets of the Riemann surface of B−1.
For the following constructions we assume that B is regularized, i.e.,

(1) all zeros of B are simple (which implies that 0 is not a critical value),
(2) if ζj and ζk are critical points of B , then

|B(ζj)| = |B(ζk)| =⇒ B(ζj) = B(ζk)

B(ζj)/B(ζk) ∈ R+ =⇒ B(ζj) = B(ζk).

These are formal restrictions – they can always be achieved by replacing
B by B̃ = B2 ◦B ◦B1, where B1 and B2 are appropriate Blaschke products
of degree 1 (conformal automorphisms of D). This transformation has no
influence on the structures we are interested in.



The Riemann Surface of B−1



Blaschke products as covering maps

A Blaschke product B : D → D of degree n is an n-fold covering map.
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Blaschke products as covering maps

The phase flow allows us to determine the basins of the zeros.



Blaschke products as covering maps

Each basin is mapped onto a slit disk.



Riemann surfaces of Blaschke products

Since the Blaschke product is an n-fold covering map of D onto itself, its
inverse B−1 lives on a Riemann surface SB formed by n sheets D1, . . . ,Dn,
where each sheet is a copy of D.
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Riemann surfaces of Blaschke products

Since the Blaschke product is an n-fold covering map of D onto itself, its
inverse B−1 lives on a Riemann surface SB formed by n sheets D1, . . . ,Dn,
where each sheet is a copy of D.

Without loss of generality we may
assume that B is regularized.
Then the basins of attraction Bk

of the zeros zk of B are mapped
bijectively onto disks Dk with
radial slits. These are the sheets
Dk of the Riemann surface SB .

The neighboring relations of the basins tell us how the sheets have to be
glued along their slits.



Blaschke Products: Monodromy



The Fundamental Group

Let W = B(S) be the set of critical values of a regularized Blaschke
product B , and consider closed oriented paths (loops) γ in Ḋ := D \W

with base point 0 /∈ W .



The Fundamental Group

Let W = B(S) be the set of critical values of a regularized Blaschke
product B , and consider closed oriented paths (loops) γ in Ḋ := D \W

with base point 0 /∈ W .
These loops form a group with
respect to concatenation.
The fundamental group π1(Ḋ) of
Ḋ consists of equivalence classes
[γ] of homotopic loops in Ḋ.
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Any path γ in Ḋ can be lifted to a path Γ on the Riemann surface SB .
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initial point of γ); once this point
is fixed, Γ is uniquely determined.



Monodromy Group of a Blaschke Product

Any path γ in Ḋ can be lifted to a path Γ on the Riemann surface SB .

The initial point of Γ can be
chosen on any sheet (“above” the
initial point of γ); once this point
is fixed, Γ is uniquely determined.
If γ is a loop, this need not be so
for Γ, since the sheet of its
terminal point can be different
from the sheet of its initial point.



Monodromy Group of a Blaschke Product

Any path γ in Ḋ can be lifted to a path Γ on the Riemann surface SB .

Denoting by Dj the sheet
containing the initial point of Γ,
and by Dk the sheet containing
its terminal point, this defines a
permutation

Mγ : j 7→ k , j = 1, . . . , n.



Monodromy Group of a Blaschke Product

Any path γ in Ḋ can be lifted to a path Γ on the Riemann surface SB .

Denoting by Dj the sheet
containing the initial point of Γ,
and by Dk the sheet containing
its terminal point, this defines a
permutation

Mγ : j 7→ k , j = 1, . . . , n.

Since Mγ depends only on the
homotopy class of γ, we write
M[γ].



Monodromy Group of a Blaschke Product

Any path γ in Ḋ can be lifted to a path Γ on the Riemann surface SB .

This defines the monodromy
mapping

MB : [γ] 7→ M[γ].

MB([γ]) is the permutation of
sheets of SB induced by the
lifting of a closed loop γ.
In the image on the left

MB([γ]) = (1 2 3).



Monodromy Group of a Blaschke Product

Any path γ in Ḋ can be lifted to a path Γ on the Riemann surface SB .

This defines the monodromy
mapping

MB : [γ] 7→ M[γ].

MB([γ]) is the permutation of
sheets of SB induced by the
lifting of a closed loop γ.
In the image on the left

MB([γ]) = (1 2 3).

Endowed with concatenation of loops, MB : π1(Ḋ) → Sn is the
monodromy group of B , a subgroup of the symmetric group Sn.



Generators of the monodromy group

The fundamental group π1(Ḋ) is generated by the (equivalence classes of)
“small loops” γj around the critical values B(ζj), and the monodromy
group MB is generated by the permutations of the sheets D1, . . . ,Dn

induced by these loops. This can be seen in the phase plot of B !
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Generators of the monodromy group

The fundamental group π1(Ḋ) is generated by the (equivalence classes of)
“small loops” γj around the critical values B(ζj), and the monodromy
group MB is generated by the permutations of the sheets D1, . . . ,Dn

induced by these loops. This can be seen in the phase plot of B !

a

b

c

(ab)

(bc)

These cells are the generators of the monodromy group MB .



Some examples

Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

This Blaschke product has degree 3, with two saddle points of order 1.
The generators of its monodromy group are (1 2) and (2 3), and MB is the
symmetric group S3.
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Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

This Blaschke product has degree 4, with a saddle point of order 3.
The generator of its monodromy group is (1 2 3 4), so that MB = Z4.
The (only) critical value is very small



Some examples

Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

This Blaschke product has degree 4, with a saddle point of order 3.
The generator of its monodromy group is (1 2 3 4), so that MB = Z4.
The (only) critical value is very small , a zoom-in shows the loop more
clearly.



Some examples

Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

A generic Blaschke product of degree 5 has four saddle points of order 1.
The generators of its monodromy group are (1 5), (2 5), (3 5), (4 5),
and the monodromy group is the symmetric group S5.



Some examples

Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

This Blaschke product has degree 4 and 3 saddle points ζ1, ζ2, ζ3 of
order 1, but two critical values coincide, B(ζ2) = B(ζ3) =: w .



Some examples

Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

This Blaschke product has degree 4 and 3 saddle points ζ1, ζ2, ζ3 of
order 1, but two critical values coincide, B(ζ2) = B(ζ3) =: w .
Since a loop which encircles w affects both cells C2 and C3, they
“act simultaneously”, which results in the permutation (1 3)(2 4).
Together with the second generator (3 4) this produces the monodromy
group of B , which is the dihedral group D4.
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Now we have degB = 12 with 11 saddle points, but only 5 different
critical values: w1 = w2 = w3, w5 = w6 = w7 and w9 = w10 = w11.
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Now we have degB = 12 with 11 saddle points, but only 5 different
critical values: w1 = w2 = w3, w5 = w6 = w7 and w9 = w10 = w11.
Consequently, its monodromy group has 5 generators, corresponding to
loops around w1,w4,w5,w8 and w9:
(1, 10)(2, 11)(3, 12), (10, 12), (7, 10)(8, 11)(9, 12), (11, 12), (4, 10)(5, 12)(6, 11)
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Phase plot of a Blaschke product (left), generators of its monodromy
group (middle), and loops from which the cells are generated (right).

Now we have degB = 12 with 11 saddle points, but only 5 different
critical values: w1 = w2 = w3, w5 = w6 = w7 and w9 = w10 = w11.
Consequently, its monodromy group has 5 generators, corresponding to
loops around w1,w4,w5,w8 and w9:
(1, 10)(2, 11)(3, 12), (10, 12), (7, 10)(8, 11)(9, 12), (11, 12), (4, 10)(5, 12)(6, 11)



Blaschke Products: Composition



Compositions of Blaschke Products

The Blaschke product B in the last example was special, because it was a
composition of two Blaschke products of lower degree, B = g ◦ f .

−→
f

−→
g

The figure illustrates how Blaschke products f of degree 3 and g of
degree 4 are composed to a Blaschke product of degree 12.
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The Blaschke product B in the last example was special, because it was a
composition of two Blaschke products of lower degree, B = g ◦ f .

−→
f

−→
g

The figure illustrates how Blaschke products f of degree 3 and g of
degree 4 are composed to a Blaschke product of degree 12.
Since a phase plot is constructed by pulling back the structure from the
range plane to the domain, it should be read from right to left.
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−→
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The phase plot of g (middle) shows the critical points of g .
By the chain rule,

(g ◦ f )′ = (g ′ ◦ f ) · f ′,

their pull back via f are critical points of B (left).



Compositions of Blaschke Products

The Blaschke product B in the last example was special, because it was a
composition of two Blaschke products of lower degree, B = g ◦ f .

−→
f

−→
g

The phase plot of g (middle) shows the critical points of g .
By the chain rule,

(g ◦ f )′ = (g ′ ◦ f ) · f ′,

their pull back via f are critical points of B (left).
The remaining critical points of B are the critical points of f .
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The Blaschke product B in the last example was special, because it was a
composition of two Blaschke products of lower degree, B = g ◦ f .
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This can also be seen in the corresponding exceptional tiles.
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This can also be seen in the corresponding exceptional tiles.
Since f maps D onto a 3-fold covering of D, each exceptional tile of g is
triplicated in the phase plot of B .



Compositions of Blaschke Products

The Blaschke product B in the last example was special, because it was a
composition of two Blaschke products of lower degree, B = g ◦ f .

−→
f

−→
g

This can also be seen in the corresponding exceptional tiles.
Since f maps D onto a 3-fold covering of D, each exceptional tile of g is
triplicated in the phase plot of B .
All tiles with the same color are conformally equivalent, since they are
pulled back from the same tile in the image on the right.



A Criterion for Decomposability

Theorem (Daepp, Gorkin, Shaffer, Sokolowsky, Voss, 2015)

A (regularized) finite Blaschke product B is decomposable as B = g ◦ f with
Blaschke products f and g of degree m ≥ 2 and n ≥ 2, respectively, if and only if
the critical points of B can be partitioned into multisets A0,A1, . . . ,An−1 such
that:

(i) The set A0 contains m − 1 elements, and each set A1, . . . ,An−1 contains m
elements.

(ii) Two critical points of B have the same multiplicity whenever they belong to
the same set Ak for some k = 1, . . . , n − 1,

(iii) Let f0 be (one and then any) Blaschke product of degree m with A0 as set
of critical points. Then f0 is constant on each Ak for k = 1, . . . , n − 1.

If these conditions are satisfied then B can be decomposed as B = g0 ◦ f0, and
the general form of such decompositions is

B = (g0 ◦ h
−1) ◦ (h ◦ f0)

with a conformal disk automorphism h.
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(i) The partitioning of
critical points can be read
off from the color and the
shape of the exceptional
tiles.
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Checking the Conditions in the DGSSV-Theorem

(i) The partitioning of
critical points can be read
off from the color and the
shape of the exceptional
tiles.
The set A0 has 2 elements,
each of the other sets
A1,A2,A3 has 3 elements.

(ii) All critical points have
multiplicity 1.

(iii) How do we see that f0
is constant on each set Ak?
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Condition (iii) is equivalent to the fact that f0 maps all exceptional tiles
associated with the same set Ak onto one and the same tile. This is a
matter of symmetry.
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Checking the conditions in the DGSSV-Theorem

Condition (iii) is equivalent to the fact that f0 maps all exceptional tiles
associated with the same set Ak onto one and the same tile. This is a
matter of symmetry.

Knowing (or guessing) which exceptional tiles contain the critical points of
f0, this can be checked by constructing symmetric paths that connect the
tiles in the corresponding set (as shown for the yellow tiles).
All this holds up to some error depending on the resolution of the tiling.



A Theorem of Ritt

There is another, more abstract, criterion for decomposability of Blaschke
products (originally stated for polynomials).

Theorem (Ritt, 1922)

A (normalized) Blaschke product is decomposable if and only if its
monodromy group acts imprimitively on the sheets of its Riemann surface.

J.F. Ritt, Prime and composite polynomials. Trans. Amer. Math. Soc.23, 51–66, 1922.
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A group G operating on a set S acts imprimitively, if there is a non-trivial
partition of S into (disjoint) subsets P1, . . . ,Pm which is respected by G ,
i.e., if s1, s2 ∈ Pk and g ∈ G , then g(s1), g(s2) ∈ Pj for some j .



A Theorem of Ritt

There is another, more abstract, criterion for decomposability of Blaschke
products (originally stated for polynomials).

Theorem (Ritt, 1922)

A (normalized) Blaschke product is decomposable if and only if its
monodromy group acts imprimitively on the sheets of its Riemann surface.

J.F. Ritt, Prime and composite polynomials. Trans. Amer. Math. Soc.23, 51–66, 1922.

A group G operating on a set S acts imprimitively, if there is a non-trivial
partition of S into (disjoint) subsets P1, . . . ,Pm which is respected by G ,
i.e., if s1, s2 ∈ Pk and g ∈ G , then g(s1), g(s2) ∈ Pj for some j .

Can this partition be seen in the phase plot of a decomposable Blaschke
product?
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Its monodromy group MB acts on the sheets of the Riemann surface SB .
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Visualizing Ritt’s Theorem

This is a phase plot of B = g ◦ f with m = deg f = 3 and n = deg g = 3.
Its monodromy group MB acts on the sheets of the Riemann surface SB .

Here are the generators of MB .
These three cells together
represent one generator,
these represent another one,
this single cell is the third one,
and this is the last one.
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Visualizing Ritt’s Theorem

This is a phase plot of B = g ◦ f with m = deg f = 3 and n = deg g = 3.
Its monodromy group MB acts on the sheets of the Riemann surface SB .

The generators of MB associated
with critical points of f respect
the partition, since they act only
inside the first (yellow) group.
The generators of MB associated
with critical points of g respect
the partition, since they permute
the groups (yellow and violet).
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Visualizing Ritt’s Theorem

This is a phase plot of B = g ◦ f with m = deg f = 3 and n = deg g = 3.
Its monodromy group MB acts on the sheets of the Riemann surface SB .

There is somewhat more to
discover.
Each of the highlighted
superbasins is mapped by f onto
a copy of the unit disk. The
generators of associated with f
permute these.
The generators associated with g
operate inside the basins, and
they all act in the same way.

Let’s look at another example.
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The monodromy group of a composition

f

g g ◦ f



The monodromy group of a composition

f

g g ◦ f

. . . is the direct product of the monodromy groups of its factors.
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k !
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The sine function is a sum
of two exponentials,

sin z =
1

2i

(
eiz − e−iz

)



A picture book of complex functions

The exponential function

e
z
= 1 +

z

1 !
+

z2

2 !
+ . . .+

zk

k !
+ . . .

A linear combination of three
exponential functions,

f (z) =
∑

cke
akz
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50∏

k=1

z − zk
1− zkz

.

Wilhelm Blaschke (1885-1962)
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A picture book of complex functions

A singular inner function
generated from an atomic
measure at the fifth roots of
unity,

f (z) =

5∏

k=1

exp
z + zk
z − zk

,

where zk = ωk with ω = e2πi/5.

This function has no zeros in the
unit disk and constant modulus 1
almost everywhere on the unit
circle.



A picture book of complex functions

z

1− z
+

z2

1− z2
+ . . .+

zn

1− zn
+ . . .

Johann Heinrich Lambert
(1728-1777)

The Lambert function is the generating function of the divisor function σ0,
its n th Taylor coefficient coincides with the number of divisors of n.



A picture book of complex functions

A Jacobi Theta function

f (z) :=

∞∑

k=−∞

qk
2
e2kπi z

Carl Gustav Jacobi
(1804-1851)
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A Weierstrass’ ℘–Function

f (z) =
1

z2
+

∑

p∈P,p 6=0

[
1

(z − p)2
−

1

p2

]

and its derivative.

Karl Weierstraß (1815-1897)
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The Eisenstein series G6

Eisenstein series

Gk(z) =
∑

(c,d)∈Z×Z

(c,d) 6=(0,0)

1

(cz + d)k

Ferdinand Eisenstein (1823 – 1852)
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Klein’s automorphic j-function

j(z) = 123
20G 3

4

20G 3
4 − 49G 2

6

Felix Klein (1849-1929)
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A picture book of complex functions

Ramanujan’s continued fraction,
convergent 201.

1 +
z

1 +
z2

1 +
z3

1 +
. . .

Srinivasa Ramanujan (1887-1920)



A picture book of complex functions

The Riemann Zeta function

f (z) =
1

1z
+

1

2z
+

1

3z
+

1

4z
. . .

Bernhard Riemann (1826-1866)



Riemann’s explicit formula

In his celebrated paper “Über die Anzahl der
Primzahlen unter einer gegeben Größe” of
1859, Bernhard Riemann derives an explicit
formula for analytic continuation of the Zeta
function,

2 sin(πz) Γ(z) ζ(z) = i
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(−x)z−1

ex − 1
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The curve C starts at +∞, runs once
around the origin in positive direction and
returns to +∞.
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1859, Bernhard Riemann derives an explicit
formula for analytic continuation of the Zeta
function,

2 sin(πz) Γ(z) ζ(z) = i

∮

C

(−x)z−1

ex − 1
dx .

The curve C starts at +∞, runs once
around the origin in positive direction and
returns to +∞. This formula implies that
Zeta has a simple pole at 1 and “trivial”
zeros at −2,−4,−6, . . ., but there are
others, nicely aligned along Re z = 1/2.



Riemann’s explicit formula

In his celebrated paper “Über die Anzahl der
Primzahlen unter einer gegeben Größe” of
1859, Bernhard Riemann derives an explicit
formula for analytic continuation of the Zeta
function,

2 sin(πz) Γ(z) ζ(z) = i

∮

C

(−x)z−1

ex − 1
dx .

The curve C starts at +∞, runs once
around the origin in positive direction and
returns to +∞. This formula implies that
Zeta has a simple pole at 1 and “trivial”
zeros at −2,−4,−6, . . ., but there are
others, nicely aligned along Re z = 1/2.
Are they ?
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Non-trivial zeros of the Zeta function
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Berhard Riemann was aware that all “non-trivial” zeros are located in the
closure of the “critical strip”

S := {z ∈ C : 0 < Re z < 1}.

Moreover, he heuristically estimated the number N(T ) of non-trivial zeros
which satisfy 0 < Im z < T by

N(T ) ≈
T

2π
log

T

2π
−

T

2π

and claimed:
Indeed one finds about as many real roots within these bounds, and it is very

likely that all roots are real. A strict proof of this fact would be desirable,

however, after some unsuccessful attempts, I abandoned searching for one,

because it was expendable for the next purpose of my investigations.
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The Riemann Hypothesis

That the (nontrivial) zeros “are real” means in fact that they exactly
lie in the middle of the critical strip, i.e., their real part equals 1/2.
This innocent statement is the celebrated Riemann Hypothesis.

In the years after Riemann’s death the difficulty of the problem was not
recognized. This changed when David Hilbert included the conjecture as
number 8 in his famous list of the 23 most important unsolved problem in
mathematics.

More than 100 years later the problem is still open. In 2000, the Clay
Mathematics Institute has pronounced the Riemann Hypothesis as one of
the seven Millennium Problems and donated a 1 Million US dollar price for
its verification.

Though it is known today that more than 10 000 000 000 000 non-trivial
zeros indeed lie on the critical line, the problem withstands all attacks and
seems far from being solved.
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The Zeta function in the critical strip

The phase portrait of the Zeta function is
surprisingly rich.
The most interesting region is the critical
strip.
Here we are in the critical strip at height
Im z = 121 415.
The white line is the critical line.
In particular the right half of the critical
strip is remarkably colorful.

In order to explore this region further we
send out scouts.
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Universality of the Zeta function

The following result is the translation of the
Karatsuba-Voronin universality theorem
(in a general form due to Bhaskar Bagchi)
into the language of phase plots.

Theorem

Every string with chromatic number zero can hide
itself in the phase plot of the Riemann Zeta
function.

Note that the shape as well as the color of the
string can be chosen arbitrarily, provided its
chromatic number is zero !

The necessity of the condition chrom S = 0 is
equivalent to the Riemann Hypothesis.
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